BACKGROUND: Tailoring surveillance and treatment strategies for stage II colon cancer (CC) after curative surgery remains challenging, and personalized approaches are lacking. We aimed to identify a gene methylation panel capable of stratifying high-risk stage II CC patients for recurrence beyond traditional clinical variables. METHODS: Genome-wide tumor tissue DNA methylation data were analyzed from 562 stage II CC patients who underwent surgery in Germany (DACHS study). The cohort was divided into a training set (N = 395) and an internal validation set (N = 131), with external validation performed on 97 stage II CC patients from Spain. DNA methylation markers were primarily selected using the Elastic Net Cox model. The resulting prognostic index (PI), a combination of clinical factors and selected methylation markers, was compared to baseline models using clinical variables or microsatellite instability (MSI), with discrimination and prediction accuracy assessed through time-dependent receiver operating characteristic curves (AUC) and Brier scores. RESULTS: The final PI incorporated age, sex, tumor stage, location, and 27 DNA methylation markers. The PI consistently outperformed the baseline model including age, sex, and tumor stage in time-dependent AUC across validation cohorts (e.g., 1-year AUC and 95 % confidence interval: internal validation set, PI: 0.66, baseline model: 0.52; external validation set, PI: 0.72, baseline model: 0.64). In internal validation, the PI also showed a consistently improved time-dependent AUC compared with a combination of MSI and tumor stage only. Nevertheless, the PI did not improve the prediction accuracy of CC recurrence compared to the baseline model. CONCLUSIONS: This study identified 27 tumor tissue DNA methylation biomarkers that improved the discriminative power in classifying recurrence risk among stage II colon cancer patients. While this methylation panel alone lacks sufficient prediction accuracy for clinical application, its discriminative improvement suggests potential value as part of a multimodal risk-stratification tool.