How can we characterize human generalization and distinguish it from generalization in machines?
Curr. Dir. Psychol. 34, 293-300 (2025)
People
appear to excel at generalization: They require little experience to
generalize their knowledge to new situations. But can we confidently
make such a conclusion? To make progress toward a better understanding,
we characterize human generalization by introducing three proposed
cognitive mechanisms allowing people to generalize: applying simple
rules, judging new objects by considering their similarity to previously
encountered objects, and applying abstract rules. We highlight the
systematicity with which people use these three mechanisms by, perhaps
surprisingly, focusing on failures of generalization. These failures
show that people prefer simple ways to generalize, even when simple is
not ideal. Together, these results can be subsumed under two proposed
stages: First, people infer what aspects of an environment are task
relevant, and second, while repeatedly carrying out the task, the mental
representations required to solve the task change. In this article, we
compare humans to contemporary AI systems. This comparison shows that AI
systems use the same generalization mechanisms as humans. However, they
differ from humans in the way they abstract patterns from observations
and apply these patterns to previously unknown objects—often resulting
in generalization performance that is superior to, but sometimes
inferior to, that of humans.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
generalization; mental representations; cognitive processes; memory; abstraction; Category; Similarity
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0963-7214
e-ISSN
1467-8721
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 34,
Heft: 5,
Seiten: 293-300
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Sage
Verlagsort
2455 Teller Rd, Thousand Oaks, Ca 91320 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540011-001
Förderungen
Copyright
Erfassungsdatum
2024-05-09