PuSH - Publikationsserver des Helmholtz Zentrums München

Raab, R.* ; Bohr, A.* ; Klede, K.* ; Gmeiner, B.* ; Eskofier, B.M.

Estimating Group Means Under Local Differential Privacy.

In: (Proceedings on Privacy Enhancing Technologies). 2025. 236 - 274 (Proceedings on Privacy Enhancing Technologies ; 2025)
Verlagsversion DOI
Creative Commons Lizenzvertrag
The European Health Data Space (EHDS) aims to enable the sharing of health data across Europe to improve healthcare and research. While the EHDS mandates anonymization or pseudonymization of shared health data, these techniques may still allow adversaries to re-identify individuals. Local differential privacy (LDP) has been proposed as a formal privacy guarantee that can help mitigate this issue. In this paper, we consider a common problem when analyzing health data: estimating means for different groups. We discuss a generic privacy-preserving method for approximating the means of different groups in a decentralized setting where both the group and the value are considered private. We show that four concrete instantiations of the method based on existing mean estimation methods (Laplace, Bernoulli, Piecewise, and NPRR) are locally differentially private. We evaluate their performance on synthetic and real-world medical datasets. Our results show that the proposed methods can accurately estimate the group means, while maintaining privacy. However, similar to other LDP algorithms, our approach requires a sufficient amount of data (in our case a sufficient amount of samples per group) combined with a sufficiently large privacy budget ε to produce accurate results. We discuss concrete practical issues like choosing an appropriate input range, dealing with large privacy budgets through the use of the shuffle model of differential privacy, and the need for further analysis techniques to make LDP solutions applicable to practical medical data analysis.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Differential Privacy
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2299-0984
Konferenztitel Proceedings on Privacy Enhancing Technologies
Quellenangaben Band: 2025, Heft: 4, Seiten: 236 - 274 Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Erfassungsdatum 2025-07-16