PuSH - Publikationsserver des Helmholtz Zentrums München

Metabench a sparse benchmark of reasoning and knowledge in large language models.

In: (13th International Conference on Learning Representations Iclr 2025, 24 - 28 April 2025, Singapur). 2025. 8375-8411 (13th International Conference on Learning Representations Iclr 2025)
Large Language Models (LLMs) vary in their abilities on a range of tasks. Initiatives such as the Open LLM Leaderboard aim to quantify these differences with several large benchmarks (sets of test items to which an LLM can respond either correctly or incorrectly). However, high correlations within and between benchmark scores suggest that (1) there exists a small set of common underlying abilities that these benchmarks measure, and (2) items tap into redundant information and the benchmarks may thus be considerably compressed. We use data from n > 5000 LLMs to identify the most informative items of six benchmarks, ARC, GSM8K, HellaSwag, MMLU, TruthfulQA and WinoGrande (with d = 28, 632 items in total). From them we distill a sparse benchmark, metabench, that has less than 3% of the original size of all six benchmarks combined. This new sparse benchmark goes beyond point scores by yielding estimators of the underlying benchmark-specific abilities. We show that these estimators (1) can be used to reconstruct each original individual benchmark score with, on average, 1.24% root mean square error (RMSE), (2) reconstruct the original total score with 0.58% RMSE, and (3) have a single underlying common factor whose Spearman correlation with the total score is r = 0.94.
Scopus
Cited By
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN [9798331320850]
Konferenztitel 13th International Conference on Learning Representations Iclr 2025
Konferzenzdatum 24 - 28 April 2025
Konferenzort Singapur
Quellenangaben Band: , Heft: , Seiten: 8375-8411 Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540011-001
Scopus ID 105010183342
Erfassungsdatum 2025-07-17