PuSH - Publikationsserver des Helmholtz Zentrums München

Sparse autoencoders reveal temporal difference learning in large language models.

In: (13th International Conference on Learning Representations Iclr 2025, 24 - 28 April 2025, Singapur). 2025. 4972-4997 (13th International Conference on Learning Representations Iclr 2025)
Verlagsversion
In-context learning, the ability to adapt based on a few examples in the input prompt, is a ubiquitous feature of large language models (LLMs). However, as LLMs' in-context learning abilities continue to improve, understanding this phenomenon mechanistically becomes increasingly important. In particular, it is not well-understood how LLMs learn to solve specific classes of problems, such as reinforcement learning (RL) problems, in-context. Through three different tasks, we first show that Llama 3 70B can solve simple RL problems in-context. We then analyze the residual stream of Llama using Sparse Autoencoders (SAEs) and find representations that closely match temporal difference (TD) errors. Notably, these representations emerge despite the model only being trained to predict the next token. We verify that these representations are indeed causally involved in the computation of TD errors and Q-values by performing carefully designed interventions on them. Taken together, our work establishes a methodology for studying and manipulating in-context learning with SAEs, paving the way for a more mechanistic understanding.
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN [9798331320850]
Konferenztitel 13th International Conference on Learning Representations Iclr 2025
Konferzenzdatum 24 - 28 April 2025
Konferenzort Singapur
Quellenangaben Band: , Heft: , Seiten: 4972-4997 Artikelnummer: , Supplement: ,
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540011-001
Scopus ID 105010206887
Erfassungsdatum 2025-07-18