Salehi, F.* ; Zarifi, S.H.* ; Bayat, S.* ; Habibpour, M.* ; Asemanrafat, A.* ; Kleyer, A.* ; Schett, G.* ; Fritsch‐Stork, R.* ; Eskofier, B.M.
Predicting disease activity score in rheumatoid arthritis patients treated with biologic disease-modifying antirheumatic drugs using machine learning models.
Technologies 13, 350 - 350 (2025)
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by joint inflammation and progressive disability. While biological disease-modifying antirheumatic drugs (bDMARDs) have significantly improved disease control, predicting individual treatment response remains clinically challenging. This study presents a machine learning approach to predict 12-month disease activity, measured by DAS28-CRP, in RA patients beginning bDMARD therapy. We trained and evaluated eight regression models, including Ridge, Lasso, Support Vector Regression, and XGBoost, using baseline clinical features from 154 RA patients treated at University Hospital Erlangen. A rigorous nested cross-validation strategy was applied for internal model selection and validation. Importantly, model generalizability was assessed using an independent external dataset from the Austrian BioReg registry, which includes a more diverse, real-world RA patient population from across multiple clinical sites. The Ridge regression model achieved the best internal performance (MAE: 0.633, R2: 0.542) and showed strong external validity when applied to unseen BioReg data (MAE: 0.678, R2: 0.491). These results indicate robust cross-cohort generalization. By predicting continuous DAS28-CRP scores instead of binary remission labels, our approach supports flexible, individualized treatment planning based on local or evolving clinical thresholds. This work demonstrates the feasibility and clinical value of externally validated, data-driven tools for precision treatment planning in RA.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Antirheumatic Drugs ; Biologic Agents; Remission
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2227-7080
e-ISSN
2227-7080
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 8,
Seiten: 350 - 350
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Mdpi Ag, Grosspeteranlage 5, Ch-4052 Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540008-001
Förderungen
Copyright
Erfassungsdatum
2025-10-13