PuSH - Publikationsserver des Helmholtz Zentrums München

Salehi, F.* ; Zarifi, S.H.* ; Bayat, S.* ; Habibpour, M.* ; Asemanrafat, A.* ; Kleyer, A.* ; Schett, G.* ; Fritsch‐Stork, R.* ; Eskofier, B.M.

Predicting disease activity score in rheumatoid arthritis patients treated with biologic disease-modifying antirheumatic drugs using machine learning models.

Technologies 13, 350 - 350 (2025)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by joint inflammation and progressive disability. While biological disease-modifying antirheumatic drugs (bDMARDs) have significantly improved disease control, predicting individual treatment response remains clinically challenging. This study presents a machine learning approach to predict 12-month disease activity, measured by DAS28-CRP, in RA patients beginning bDMARD therapy. We trained and evaluated eight regression models, including Ridge, Lasso, Support Vector Regression, and XGBoost, using baseline clinical features from 154 RA patients treated at University Hospital Erlangen. A rigorous nested cross-validation strategy was applied for internal model selection and validation. Importantly, model generalizability was assessed using an independent external dataset from the Austrian BioReg registry, which includes a more diverse, real-world RA patient population from across multiple clinical sites. The Ridge regression model achieved the best internal performance (MAE: 0.633, R2: 0.542) and showed strong external validity when applied to unseen BioReg data (MAE: 0.678, R2: 0.491). These results indicate robust cross-cohort generalization. By predicting continuous DAS28-CRP scores instead of binary remission labels, our approach supports flexible, individualized treatment planning based on local or evolving clinical thresholds. This work demonstrates the feasibility and clinical value of externally validated, data-driven tools for precision treatment planning in RA.
Impact Factor
Scopus SNIP
Altmetric
3.600
1.757
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Antirheumatic Drugs ; Biologic Agents; Remission
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2227-7080
e-ISSN 2227-7080
Zeitschrift Technologies
Quellenangaben Band: 13, Heft: 8, Seiten: 350 - 350 Artikelnummer: , Supplement: ,
Verlag MDPI
Verlagsort Mdpi Ag, Grosspeteranlage 5, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Scopus ID 105014322463
Erfassungsdatum 2025-10-13