Closed: Verlagsversion online verfügbar 10/2026
möglich sobald bei der ZB eingereicht worden ist.
Mapping early human blood cell differentiation using single-cell proteomics and transcriptomics.
Science 390:eadr8785 (2025)
Single-cell transcriptomics (scRNA-seq) has facilitated the characterization of cell state heterogeneity and recapitulation of differentiation trajectories. However, the exclusive use of mRNA measurements comes at the risk of missing important biological information. Here we leveraged recent technological advances in single-cell proteomics by Mass Spectrometry (scp-MS) to generate an scp-MS dataset of an in vivo differentiation hierarchy encompassing over 2500 human CD34+ hematopoietic stem and progenitor cells. Through integration with scRNA-seq, we identified proteins that are important for stem cell function, which were not indicated by their mRNA transcripts. Further, we showed that modeling translation dynamics can infer cell progression during differentiation and explain substantially more protein variation from mRNA than linear correlation. Our work offers a framework for single-cell multi-omics studies across biological systems.
Impact Factor
Scopus SNIP
Altmetric
45.800
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Blood Cell
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0036-8075
e-ISSN
1095-9203
Zeitschrift
Science
Quellenangaben
Band: 390,
Heft: 6770,
Artikelnummer: eadr8785
Verlag
American Association for the Advancement of Science (AAAS)
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Scopus ID
105019074950
PubMed ID
40839704
Erfassungsdatum
2025-10-13