Motion-robust T∗2 quantification from low-resolution gradient echo brain MRI with physics-informed deep learning.
Magn. Reson. Med. 95, 346-362 (2026)
PURPOSE: T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to its high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ maps. METHODS: We extend PHIMO, our previously introduced learning-based physics-informed motion correction method for low-resolution T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping. Our extended version, PHIMO+, utilizes acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion. RESULTS: PHIMO+ outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO+ performs on par with a conventional state-of-the-art motion correction method for T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo MRI, which relies on redundant data acquisition. CONCLUSION: PHIMO+'s competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, makes it a promising solution for motion-robust T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification in research settings and clinical routine.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Data‐consistent Image Reconstruction ; Motion Correction ; Motion Detection ; Motion Simulation ; Self‐supervised Optimization; Artifacts
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2026
Prepublished im Jahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0740-3194
e-ISSN
1522-2594
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 95,
Heft: 1,
Seiten: 346-362
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Federal Ministry of Research, Technology, and Space
DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelligence
Munich Center for Machine Learning
Helmholtz Association
Copyright
Erfassungsdatum
2025-11-18