PuSH - Publikationsserver des Helmholtz Zentrums München

Eichhorn, H. ; Spieker, V. ; Hammernik, K.* ; Saks, E.* ; Felsner, L.* ; Weiss, K.* ; Preibisch, C.* ; Schnabel, J.A.

Motion-robust T∗2 quantification from low-resolution gradient echo brain MRI with physics-informed deep learning.

Magn. Reson. Med. 95, 346-362 (2026)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
PURPOSE: T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo magnetic resonance imaging is particularly affected by subject motion due to its high sensitivity to magnetic field inhomogeneities, which are influenced by motion and might cause signal loss. Thus, motion correction is crucial to obtain high-quality T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ maps. METHODS: We extend PHIMO, our previously introduced learning-based physics-informed motion correction method for low-resolution T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ mapping. Our extended version, PHIMO+, utilizes acquisition knowledge to enhance the reconstruction performance for challenging motion patterns and increase PHIMO's robustness to varying strengths of magnetic field inhomogeneities across the brain. We perform comprehensive evaluations regarding motion detection accuracy and image quality for data with simulated and real motion. RESULTS: PHIMO+ outperforms the learning-based baseline methods both qualitatively and quantitatively with respect to line detection and image quality. Moreover, PHIMO+ performs on par with a conventional state-of-the-art motion correction method for T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification from gradient echo MRI, which relies on redundant data acquisition. CONCLUSION: PHIMO+'s competitive motion correction performance, combined with a reduction in acquisition time by over 40% compared to the state-of-the-art method, makes it a promising solution for motion-robust T 2 ∗ $$ {\mathrm{T}}_2^{\ast } $$ quantification in research settings and clinical routine.
Impact Factor
Scopus SNIP
Altmetric
3.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data‐consistent Image Reconstruction ; Motion Correction ; Motion Detection ; Motion Simulation ; Self‐supervised Optimization; Artifacts
Sprache englisch
Veröffentlichungsjahr 2026
Prepublished im Jahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0740-3194
e-ISSN 1522-2594
Quellenangaben Band: 95, Heft: 1, Seiten: 346-362 Artikelnummer: , Supplement: ,
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Förderungen Federal Ministry of Research, Technology, and Space
DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelligence
Munich Center for Machine Learning
Helmholtz Association
Scopus ID 105013771357
PubMed ID 40843481
Erfassungsdatum 2025-11-18