möglich sobald bei der ZB eingereicht worden ist.
Factor Analysis with Correlated Topic Model for Multi-Modal Data.
In: (28th International Conference on Artificial Intelligence and Statistics, AISTATS 2025, 3-5 May 2025, Mai Khao). 2025. 1801-1809 (Proceedings of Machine Learning Research ; 258)
Integrating various data modalities brings valuable insights into underlying phenomena. Multimodal factor analysis (FA) uncovers shared axes of variation underlying different simple data modalities, where each sample is represented by a vector of features. However, FA is not suited for structured data modalities, such as text or single cell sequencing data, where multiple data points are measured per each sample and exhibit a clustering structure. To overcome this challenge, we introduce FACTM, a novel, multi-view and multi-structure Bayesian model that combines FA with correlated topic modeling and is optimized using variational inference. Additionally, we introduce a method for rotating latent factors to enhance interpretability with respect to binary features. On text and video benchmarks as well as real-world music and COVID-19 datasets, we demonstrate that FACTM outperforms other methods in identifying clusters in structured data, and integrating them with simple modalities via the inference of shared, interpretable factors.
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
Konferenztitel
28th International Conference on Artificial Intelligence and Statistics, AISTATS 2025
Konferzenzdatum
3-5 May 2025
Konferenzort
Mai Khao
Quellenangaben
Band: 258,
Seiten: 1801-1809
Institut(e)
Human-Centered AI (HCA)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540012-001
Scopus ID
105014316367
Erfassungsdatum
2025-10-22