PuSH - Publikationsserver des Helmholtz Zentrums München

Manduchi, L.* ; Meister, C.* ; Pandey, K.C.* ; Bamler, R.* ; Cotterell, R.* ; Däubener, S.* ; Fellenz, S.* ; Fischer, A.* ; Gärtner, T.* ; Kirchler, M.* ; Kloft, M.* ; Li, Y.* ; Lippert, C.* ; de Melo, G.* ; Nalisnick, E.* ; Ommer, B.* ; Ranganath, R.* ; Waldron, M.* ; Ullrich, K.* ; Van den Broeck, G.* ; Vogt, J.E.* ; Wang, Y.* ; Wenzel, F.* ; Wood, F.* ; Mandt, S.* ; Fortuin, V.

On the challenges and opportunities in generative AI.

Trans. Machine Learn. Res. 2025, accepted (2025)
Postprint
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Band: 2025 Heft: , Seiten: , Artikelnummer: , Supplement: ,
Verlag Journal of Machine Learning Research Inc.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-530015-001
Scopus ID 105014820251
Erfassungsdatum 2025-10-22