Piron, A.* ; Szymczak, F.* ; Folon, L.* ; Crouch, D.J.M.* ; Papadopoulou, T.* ; Lytrivi, M.* ; Tong, Y.* ; Alvelos, M.I.* ; Colli, M.L.* ; Yi, X.* ; Pekalski, M.L.* ; Hatzikotoulas, K. ; Huerta-Chagoya, A.* ; Taylor, H.J.* ; Defrance, M.* ; Todd, J.A.* ; Eizirik, D.L.* ; Mercader, J.M.* ; Cnop, M.*
Identification of novel type 1 and type 2 diabetes genes by co-localization of human islet eQTL and GWAS variants with colocRedRibbon.
Cell Genom., DOI: 10.1016/j.xgen.2025.101004:101004 (2025)
Over 1,000 genetic variants have been associated with diabetes by genome-wide association studies (GWASs), but for most, their functional impact is unknown; only 7% alter gene expression in pancreatic islets in expression quantitative trait locus (eQTL) studies. To fill this gap, we developed a co-localization pipeline, colocRedRibbon, that prefilters eQTLs by the direction of effect on gene expression and shortlists overlapping eQTL and GWAS variants prior to co-localization. Applying colocRedRibbon to recent diabetes and glycemic trait GWASs, we identified 292 co-localizing gene regions, including 24 co-localizations for type 1 diabetes and 268 for type 2 diabetes and glycemic traits, representing a 4-fold increase. A low-frequency type 2 diabetes protective variant increases islet MYO5C expression, and a type 1 diabetes protective variant increases FUT2 expression. These novel co-localizations advance the understanding of diabetes genetics and its impact on human islet biology. colocRedRibbon has broad applicability to co-localize GWASs and various QTLs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gwas ; Co-localization ; Colocredribbon ; Diabetes ; Eqtl ; Genetics ; Glycemic Traits ; Insulin ; Meqtl ; Multi-ancestry ; Pqtl ; Pancreatic Islets ; β Cells
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2666-979X
e-ISSN
2666-979X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: ,
Artikelnummer: 101004
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Translational Genomics (ITG)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-506700-001
Förderungen
Copyright
Erfassungsdatum
2025-11-04