PuSH - Publikationsserver des Helmholtz Zentrums München

Sorrentino, U. ; Pavlov, M. ; Mirza-Schreiber, N. ; Brugger, M.* ; Brunet, T.* ; Tsoma, E.* ; Saparov, A. ; Dzinovic, I. ; Harrer, P. ; Stehr, A.M.* ; Wagner, M. ; Tilch, E. ; Wallacher, B.* ; Alhasan, S.* ; Koy, A.* ; Di Fonzo, A.* ; Kolníková, M.* ; Kusikova, K.* ; Havránková, P.* ; Tautanova, R.* ; Lösecke, S.* ; Eck, S. ; Boesch, S.* ; Necpál, J.* ; Škorvánek, M.* ; Jech, R.* ; Prokisch, H. ; Winkelmann, J. ; Oexle, K. ; Graf, E. ; Zech, M.

Integrating long-read nanopore sequencing for precision resolution of genomic variants in dystonia.

Mov. Disord., DOI: 10.1002/mds.70072 (2025)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
BACKGROUND: Although many individuals with dystonia present with features indicative of single-gene etiologies, obtaining definitive genetic diagnoses can be challenging. OBJECTIVE: We assessed the value of nanopore-based long-read sequencing (LRS) in achieving molecular clarification of dystonic syndromes. METHODS: From a large dystonia cohort with short-read sequencing (SRS) data, 14 cases with unclear, difficult-to-evaluate, or missing causative variants were recruited. Long-read whole-genome sequencing was performed according to Oxford Nanopore Technologies (ONT) protocols. RESULTS: ONT sequencing produced long-range haplotypes, variant calls inaccessible to short-read technology, as well as methylation data. Phase inference allowed for changes in variant classification, establishing compound heterozygosity of causative variants in four cases. We illustrate an important advantage of LRS compared with SRS in (re)defining the identity of dystonia-causing structural variants and repeat expansions for seven individuals. One patient was found to harbor a novel exonic LINE-1 insertion in SGCE, expanding the genetic mechanism in myoclonus-dystonia. ONT data also provided unexpected insights into apparent mosaic expanded repeats in FMR1 in a subject with isolated focal dystonia. We further showed that LRS outperformed SRS in avoiding erroneous calls resulting from confounding pseudogene sequences and in discovering pathogenic alterations missed by conventional pipeline utilization (three cases). Moreover, simultaneous methylome analysis aided in directing the interpretation of three variants, including a KMT2B variant of uncertain significance that was reclassified as causal by LRS-based episignature profiling. CONCLUSIONS: ONT-based LRS uniquely improves analysis of dystonia-associated variations that had not previously been resolved by SRS, implying broad utility for future exploration of the molecular origins of the condition. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Impact Factor
Scopus SNIP
Altmetric
7.600
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Complex Structural Variants ; Dystonia ; Long‐range Phasing ; Long‐read Sequencing ; Nanopore Technology ; Repeat Expansions; Joint Consensus Recommendation; Copy-number; Medical Genetics; American-college; Exome; Standards
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0885-3185
e-ISSN 1531-8257
Zeitschrift Movement Disorders
Verlag Wiley
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-503200-001
G-503292-001
Förderungen Scientific Advisory Council of the Dystonia Medical Research Foundation
Scopus ID 105017823097
PubMed ID 41028987
Erfassungsdatum 2025-11-06