möglich sobald bei der ZB eingereicht worden ist.
Double machine learning based structure identification from temporal data.
Trans. Machine Learn. Res. 2025, accepted (2025)
Learning the causes of time-series data is a fundamental task in many applications, spanning from finance to earth sciences or bio-medical applications. Common approaches for this task are based on vector auto-regression, and they do not take into account unknown confounding between potential causes. However, in settings with many potential causes and noisy data, these approaches may be substantially biased. Furthermore, potential causes may be correlated in practical applications or even contain cycles. To address these challenges, we propose a new double machine learning based method for structure identification from temporal data (DR-SIT). We provide theoretical guarantees, showing that our method asymptotically recovers the true underlying causal structure. Our analysis extends to cases where the potential causes have cycles, and they may even be confounded. We further perform extensive experiments to showcase the superior performance of our method. Code: https://github.com/sdi1100041/TMLR_submission_DR_SIT.
Impact Factor
Scopus SNIP
0.000
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2835-8856
e-ISSN
2835-8856
Zeitschrift
Transactions on Machine Learning Research
Quellenangaben
Band: 2025
Verlag
Journal of Machine Learning Research Inc.
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-530003-001
Scopus ID
105017087045
Erfassungsdatum
2025-10-22