möglich sobald bei der ZB eingereicht worden ist.
RedDino: A Foundation Model for Red Blood Cell Analysis.
In: (28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025, 23-27 September 2025, Daejeon). Berlin [u.a.]: Springer, 2026. 445-455 (Lect. Notes Comput. Sc. ; 15963 LNCS)
Red blood cells (RBCs) are fundamental to human health, and precise morphological analysis is critical for diagnosing hematological disorders. Despite the potential of foundation models for medical diagnostics, comprehensive AI solutions for RBC analysis remain limited. We introduce RedDino, a self-supervised foundation model specifically designed for RBC image analysis. Leveraging a RBC-tailored version of the DINOv2 self-supervised learning framework, RedDino is trained on an extensive, meticulously curated dataset comprising over 1.25 million RBC images from diverse acquisition modalities and sources. Comprehensive evaluations demonstrate that RedDino significantly outperforms existing state-of-the-art models in the RBC shape classification. Through systematic assessments, including linear probing and nearest neighbor classification, we validate the model’s robust feature representation and strong generalization capabilities. Our key contributions are (1) a dedicated foundation model tailored for RBC analysis, (2) detailed ablation studies exploring DINOv2 configurations for RBC modeling, and (3) comprehensive generalization performance evaluation. RedDino captures nuanced morphological characteristics and represents a substantial advancement in developing reliable diagnostic tools. Source code and pretrained models for RedDino are available at https://github.com/Snarci/RedDino.
Altmetric
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Konferenzbeitrag
Schlagwörter
Dinov2 ; Foundation Models ; Hematology ; Medical Imaging ; Red Blood Cell Analysis ; Self-supervised Learning
Sprache
englisch
Veröffentlichungsjahr
2026
HGF-Berichtsjahr
2026
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Konferenztitel
28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Konferzenzdatum
23-27 September 2025
Konferenzort
Daejeon
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 15963 LNCS,
Seiten: 445-455
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Scopus ID
105017852001
Erfassungsdatum
2025-10-23