PuSH - Publikationsserver des Helmholtz Zentrums München

Graf, R.* ; Möller, H.J.* ; Starck, S.* ; Atad, M.* ; Braun, P.* ; Stelter, J.* ; Peters, A. ; Krist, L.* ; Willich, S.N.* ; Völzke, H.* ; Bülow, R.* ; Pischon, T.* ; Niendorf, T.* ; Paetzold, J.C.* ; Karampinos, D.C.* ; Rueckert, D.* ; Kirschke, J.*

MAGO-SP: Detection and Correction of Water-Fat Swaps in Magnitude-Only VIBE MRI.

In: (28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025, 23-27 September 2025, Daejeon). Berlin [u.a.]: Springer, 2026. 328-338 (Lect. Notes Comput. Sc. ; 15972 LNCS)
DOI
Volume Interpolated Breath-Hold Examination (VIBE) MRI generates images suitable for water and fat signal composition estimation. While the two-point VIBE provides rapid water-fat-separated images, the six-point VIBE allows estimation of the effective transversal relaxation rate R2* and the proton density fat fraction (PDFF), which are imaging markers for health and disease. Ambiguity during signal reconstruction can lead to water-fat swaps. This shortcoming challenges the application of VIBE-MRI for automated PDFF analyses of large-scale clinical data and population studies. This study develops an automated pipeline to detect and correct water-fat swaps in non-contrast-enhanced VIBE images. Our three-step pipeline begins with training a segmentation network to classify volumes as “fat-like” or “water-like”, using synthetic water-fat swaps generated by merging fat and water volumes with Perlin noise. Next, a denoising diffusion image-to-image network predicts water volumes as signal priors for correction. Finally, we integrate this prior into a physics-constrained model to recover accurate water and fat signals. Our approach achieves a <1% error rate in water-fat swap detection for a 6-point VIBE. Notably, swaps disproportionately affect individuals in the Underweight and Class 3 Obesity BMI categories. Our correction algorithm ensures accurate solution selection in chemical phase MRIs, enabling reliable PDFF estimation. This forms a solid technical foundation for automated large-scale population imaging analysis.
Altmetric
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Konferenzbeitrag
Schlagwörter Mri ; Proton Density Fat Fraction ; Water-fat Mri ; Water-fat Swaps
Sprache englisch
Veröffentlichungsjahr 2026
HGF-Berichtsjahr 2026
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel 28th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2025
Konferzenzdatum 23-27 September 2025
Konferenzort Daejeon
Quellenangaben Band: 15972 LNCS, Heft: , Seiten: 328-338 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-010
Scopus ID 105018065257
Erfassungsdatum 2025-10-23