Li, J.* ; Chu, B.B.* ; Scheller, I.* ; Gagneur, J. ; Maathuis, M.H.*
Root cause discovery via permutations and Cholesky decomposition.
J. R. Stat. Soc. Ser. B-Stat. Methodol., DOI: 10.1093/jrsssb/qkaf066 (2025)
This work is motivated by the following problem: Can we identify the
disease-causing gene in a patient affected by a monogenic disorder? This
problem is an instance of root cause discovery. Specifically, we aim to
identify the intervened variable in one interventional sample using a
set of observational samples as reference. We consider a linear
structural equation model where the causal ordering is unknown. We begin
by examining a simple method that uses squared z-scores and
characterize the conditions under which this method succeeds and fails,
showing it generally cannot identify the root cause. We then prove,
without additional assumptions, that the root cause is identifiable even
if the causal ordering is not. Two key ingredients of this
identifiability result are the use of permutations and the Cholesky
decomposition, which allow us to exploit an invariant property across
different permutations to discover the root cause. Furthermore, we
characterize permutations that yield the correct root cause and, based
on this, propose a valid method for root cause discovery. We also adapt
this approach to high-dimensional settings. Finally, we evaluate our
methods through simulations and apply the high-dimensional method to
discover disease-causing genes in the gene expression dataset that
motivates this work.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Minimum Degree Algorithm ; Root (linguistics) ; Root Cause Analysis; Interventions; Inference; Selection; Model
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1369-7412
e-ISSN
1467-9868
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band:
Heft:
Seiten:
Artikelnummer:
Supplement:
Reihe
Verlag
Oxford University Press
Verlagsort
Great Clarendon St, Oxford Ox2 6dp, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
IT Infrastructure for Computational Molecular Medicine
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Stanford Biomedical Informatics National Library of Medicine (NLM) Training
Swiss National Science Foundation (SNSF)
Copyright
Erfassungsdatum
2025-10-21