PuSH - Publikationsserver des Helmholtz Zentrums München

Li, J.* ; Chu, B.B.* ; Scheller, I.* ; Gagneur, J. ; Maathuis, M.H.*

Root cause discovery via permutations and Cholesky decomposition.

J. R. Stat. Soc. Ser. B-Stat. Methodol., DOI: 10.1093/jrsssb/qkaf066 (2025)
Verlagsversion DOI
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
This work is motivated by the following problem: Can we identify the disease-causing gene in a patient affected by a monogenic disorder? This problem is an instance of root cause discovery. Specifically, we aim to identify the intervened variable in one interventional sample using a set of observational samples as reference. We consider a linear structural equation model where the causal ordering is unknown. We begin by examining a simple method that uses squared z-scores and characterize the conditions under which this method succeeds and fails, showing it generally cannot identify the root cause. We then prove, without additional assumptions, that the root cause is identifiable even if the causal ordering is not. Two key ingredients of this identifiability result are the use of permutations and the Cholesky decomposition, which allow us to exploit an invariant property across different permutations to discover the root cause. Furthermore, we characterize permutations that yield the correct root cause and, based on this, propose a valid method for root cause discovery. We also adapt this approach to high-dimensional settings. Finally, we evaluate our methods through simulations and apply the high-dimensional method to discover disease-causing genes in the gene expression dataset that motivates this work.
Impact Factor
Scopus SNIP
Altmetric
3.600
2.477
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Minimum Degree Algorithm ; Root (linguistics) ; Root Cause Analysis; Interventions; Inference; Selection; Model
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 1369-7412
e-ISSN 1467-9868
Verlag Oxford University Press
Verlagsort Great Clarendon St, Oxford Ox2 6dp, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen
IT Infrastructure for Computational Molecular Medicine
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Stanford Biomedical Informatics National Library of Medicine (NLM) Training
Swiss National Science Foundation (SNSF)
Erfassungsdatum 2025-10-21