PuSH - Publikationsserver des Helmholtz Zentrums München

DeMeo, B.* ; Nesbitt, C.* ; Miller, S.A.* ; Burkhardt, D.B.* ; Lipchina, I.* ; Fu, D.* ; Holderreith, P.* ; Kim, D.* ; Kolchenko, S.* ; Szalata, A. ; Gupta, I.* ; Kerr, C.* ; Pfefer, T.J.* ; Rojas-Rodriguez, R.* ; Kuppassani, S.* ; Kruidenier, L.* ; Doshi, P.B.* ; Zamanighomi, M.* ; Collins, J.J.* ; Shalek, A.K.* ; Theis, F.J. ; Cortes, M.*

Active learning framework leveraging transcriptomics identifies modulators of disease phenotypes.

Science, DOI: 10.1126/science.adi8577:eadi8577 (2025)
DOI PMC
: Verlagsversion online verfügbar 10/2026
Phenotypic drug screening remains constrained by the vastness of chemical space and technical challenges scaling experimental workflows. To overcome these barriers, computational methods have been developed to prioritize compounds, but they rely on either single-task models lacking generalizability or heuristic-based genomic proxies that resist optimization. We designed an active deep-learning framework that leverages omics to enable scalable, optimizable identification of compounds that induce complex phenotypes. Our generalizable algorithm outperformed state-of-the-art models on classical recall, translating to a 13-17x increase in phenotypic hit-rate across two hematological discovery campaigns. Combining this algorithm with a lab-in-the-loop signature refinement step, we achieved an additional two-fold increase in hit-rate and molecular insights. In sum, our framework enables efficient phenotypic hit identification campaigns, with broad potential to accelerate drug discovery.
Impact Factor
Scopus SNIP
Altmetric
45.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0036-8075
e-ISSN 1095-9203
Zeitschrift Science
Quellenangaben Band: , Heft: , Seiten: , Artikelnummer: eadi8577 Supplement: ,
Verlag American Association for the Advancement of Science (AAAS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 41129612
Erfassungsdatum 2025-10-24