möglich sobald bei der ZB eingereicht worden ist.
BayesRVAT enhances rare-variant association testing through Bayesian aggregation of functional annotations.
Genome Res., DOI: 10.1101/gr.280689.125 (2025)
Gene-level rare variant association tests (RVATs) are essential for uncovering disease mechanisms and identifying therapeutic targets. Advances in sequence-based machine learning have generated diverse variant pathogenicity scores, creating opportunities to improve RVATs. However, existing methods often rely on rigid models or single annotations, limiting their ability to leverage these advances. We introduce BayesRVAT, a Bayesian rare variant association test that jointly models multiple annotations. By specifying priors on annotation effects and estimating genetrait-specific posterior burden scores, BayesRVAT flexibly captures diverse rare-variant architectures. In simulations, BayesRVAT improves power while maintaining calibration. In UK Biobank analyses, it detects 10.2% more blood-trait associations and reveals novel genedisease links, including PRPH2 with retinal disease. Integrating BayesRVAT within omnibus frameworks further increases discoveries, demonstrating that flexible annotation modeling captures complementary signals beyond existing burden and variance-component tests.
Impact Factor
Scopus SNIP
Altmetric
5.500
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1088-9051
e-ISSN
1549-5469
Zeitschrift
Genome Research
Verlag
Cold Spring Harbor Laboratory Press
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
Helmholtz Pioneer Campus (HPC)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
30202 - Environmental Health
Forschungsfeld(er)
Enabling and Novel Technologies
Pioneer Campus
Pioneer Campus
PSP-Element(e)
G-540004-001
G-510007-001
G-510007-001
PubMed ID
41136342
Erfassungsdatum
2025-10-27