Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Democratizing protein language model training, sharing and collaboration.
Nat. Biotechnol., DOI: 10.1038/s41587-025-02859-7 (2025)
Training and deploying large-scale protein language models typically requires deep machine learning expertise-a barrier for researchers outside this field. SaprotHub overcomes this challenge by offering an intuitive platform that facilitates training and prediction as well as storage and sharing of models. Here we provide the ColabSaprot framework built on Google Colab, which potentially powers hundreds of protein training and prediction applications, enabling researchers to collaboratively build and share customized models.
Impact Factor
Scopus SNIP
Altmetric
41.700
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2025
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1087-0156
e-ISSN
1546-1696
Zeitschrift
Nature Biotechnology
Verlag
Nature Publishing Group
Verlagsort
New York, NY
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-010
PubMed ID
41136773
Erfassungsdatum
2025-10-28