Natterer, E.S.* ; Rao, S.R.* ; Tejada Lapuerta, A. ; Engelhardt, R.* ; Horl, S.* ; Bogenberger, K.*
Machine learning surrogates for agent-based models in transportation policy analysis.
Transp. Res. Pt. C-Emerg. Technol. 180:105360 (2025)
Effective traffic policies are crucial for managing congestion and reducing emissions. Agent-based transportation models (ABMs) offer a detailed analysis of how these policies affect travel behaviour at a granular level. However, computational constraints limit the number of scenarios that can be tested with ABMs and therefore their ability to find optimal policy settings. In this proof-of-concept study, we propose a machine learning (ML)-based surrogate model to efficiently explore this vast solution space. By combining Graph Neural Networks (GNNs) with the attention mechanism from Transformers, the model predicts the effects of traffic policies on the road network at the link level. We implement our approach in a large-scale MATSim simulation of Paris, France, covering over 30,000 road segments and 10,000 simulations, applying a policy involving capacity reduction on main roads. The ML surrogate achieves an overall R2 of 0.91; on primary roads where the policy applies, it reaches an R2 of 0.98. This study shows that the combination of GNNs and Transformer architectures can effectively serve as a surrogate for complex agent-based transportation models with the potential to enable large-scale policy optimization, helping urban planners explore a broader range of interventions more efficiently.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Graph neural networks; Transformers; Agent-based simulations; Optimization-based transportation policies; Surrogate models; Street capacity reduction; Simulation; Implementation; Management; Framework
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
0968-090X
e-ISSN
1879-2359
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 180,
Heft: ,
Seiten: ,
Artikelnummer: 105360
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2025-10-29