PuSH - Publikationsserver des Helmholtz Zentrums München

Wagner Egea, P.* ; Delhommel, F. ; Mustafa, G.* ; Leiss-Maier, F.* ; Klimper, L.* ; Badmann, T.* ; Heider, A.* ; Wille, I.* ; Groll, M.* ; Sattler, M. ; Zeymer, C.*

Modular protein scaffold architecture and AI-guided sequence optimization facilitate de novo metalloenzyme engineering.

Structure, DOI: 10.1016/j.str.2025.10.010 (2025)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Incorporating metal cofactors into computationally designed protein scaffolds provides a versatile route to novel protein functions, including the potential for new-to-nature enzyme catalysis. However, a major challenge in protein design is to understand how the scaffold architecture influences conformational dynamics. Here, we characterized structure and dynamics of a modular de novo scaffold with flexible inter-domain linkers. Three rationally engineered variants with different metal specificity were studied by combining X-ray crystallography, NMR spectroscopy, and molecular dynamics simulations. The lanthanide-binding variant was initially trapped in an inactive conformational state, which impaired efficient metal coordination and cerium-dependent photocatalytic activity. Stabilization of the active conformation by AI-guided sequence optimization using ProteinMPNN led to accelerated lanthanide binding and a 10-fold increase in kcat/Km for a photoenzymatic model reaction. Our results suggest that modular scaffold architectures provide an attractive starting point for de novo metalloenzyme engineering and that ProteinMPNN-based sequence redesign can stabilize desired conformational states.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Md Simulations ; Nmr Spectroscopy ; Proteinmpnn ; X-ray Crystallography ; Conformational Dynamics ; De Novo Protein Scaffold ; Enzyme Engineering ; Metalloprotein ; Photoenzyme ; Protein Design
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 0969-2126
e-ISSN 1878-4186
Zeitschrift Structure
Verlag Cell Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503000-001
PubMed ID 41197620
Erfassungsdatum 2025-11-11