BACKGROUND AND AIM: Gestational diabetes mellitus (GDM), a common pregnancy-related metabolic disorder, often goes undiagnosed until the second trimester, limiting early intervention opportunities. Given the higher prevalence of GDM in India, there is a critical need to investigate metabolomic biomarkers among Asian Indians, who exhibit greater insulin resistance and are predisposed to developing type 2 diabetes at an earlier age. This study aimed to identify early pregnancy metabolomic signatures predictive of GDM. METHODS: Among 2115 pregnant women from the STratification of Risk of Diabetes in Early pregnancy (STRiDE) study, we performed untargeted metabolomic profiling using UPLC-MS/MS at early pregnancy (< 16 weeks) plasma samples from 100 women-comprising 50 with GDM and 50 normal (without GDM) based on oral glucose tolerance test (OGTT) at 24-28 weeks. Statistical and machine learning approaches, including logistic regression and random forest (RF), were applied to identify GDM-associated metabolites and construct predictive models. Pathway enrichment analysis was conducted using KEGG database annotations. RESULTS: A total of 49 metabolites were significantly associated with GDM, primarily involving lipid classes such as phosphatidylcholines, sphingomyelins, and triacylglycerols. RF analysis identified a panel of eight metabolites that achieved best predictive performance (AUC 0.880; 95% CI: 0.809-0.951) for GDM. When combined with conventional clinical risk factors, the integrated model showed comparable prediction of GDM with AUC 0.88;: 95% CI: 0.810-0.952). Enrichment analysis highlighted dysregulated pathways including glycerophospholipid and sphingolipid metabolism, autophagy, and insulin resistance. CONCLUSION: This study demonstrates the utility of early-pregnancy metabolomic profiling for predicting GDM in Indian women. The eight-metabolite panel offers a promising tool for early risk stratification of GDM, warranting validation in diverse populations.