INTRODUCTION: Since the early 2000s, metabolomics has grown rapidly, becoming integral to fields like life sciences, health, and environmental research. This expansion has led to the formation of national and international societies, such as Germany's DGMet, to tackle emerging challenges. One of DGMet's goals is to improve measurement quality by assessing community needs for harmonization and standardization. A recent survey within the German-speaking community aimed to identify current practices and gaps in the use of chemical standards and reference materials, to guide future standardization efforts and collaborative initiatives. METHODS: An online survey was conducted between June 2023 and April 2024. The survey consisted of 38 key questions and was open to research institutions from Germany, Austria, and Switzerland. RESULTS: The survey was accessed by 68 laboratories, with 23 institutes providing complete or partial responses (34% response rate), which is comparable to rates reported in similar surveys within the metabolomics and lipidomics communities. Respondents were mainly experienced researchers from Germany, focusing mainly on health-related ("red") metabolomics, as indicated by 78% of the respondents, followed by microbial ("grey", 48%) and plant ("green", 39%) metabolomics (multiple answers possible). The use of targeted methods was reported more frequently (91%) than that of non-targeted methods (78%), whereas metabolite fractions studied were equally split between polar, midpolar and lipid fractions (83% each). Human (74%), mouse (61%) and Arabidopsis (30%) were the most frequently studied organisms. Most participants used synthetic chemical standards for instrument qualification (83%), calibration (78%), and metabolite identification (74%), while matrix reference materials were mainly applied for quality control (52%) and method validation (44%). There was a strong demand for more standards, especially for metabolite identification and quantification, with cost being a major barrier, particularly for isotopically labelled standards and certified reference materials. CONCLUSIONS: Valuable insights into the use of standards and reference materials within the German-speaking metabolomics community were obtained. Moving forward, the community should address critical gaps in metabolomics standardization. To achieve this, it must share its knowledge, articulate its needs clearly, and actively engage in joint efforts with national metrology institutes and international standardization initiatives.