PuSH - Publikationsserver des Helmholtz Zentrums München

Killing, C.* ; Elsbernd, K.* ; Wekerle, M.* ; Hoelscher, M. ; Rachow, A. ; Castelletti, N.*

Generative neural networks for data imputation in longitudinal epidemiological studies.

IEEE J. Biomed. Health Inform., DOI: 10.1109/JBHI.2025.3632647 (2025)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Longitudinal epidemiological studies often face challenges with incomplete follow-up and missing data, which can bias results and reduce statistical power. Conventional imputation methods may not adequately capture the complex patterns and dependencies in such multivariate time series data. While more recently developed generative machine learning models offer improved solutions, few methods are available which can handle inconsistently spaced intervals between measurements across long time periods and completely missing time steps, characteristics which are common in real-world studies evaluating long-term health outcomes. This paper introduces a variational autoencoder-based generative neural network designed for imputing partially and fully missing information in irregular time series with extensive missingness. Our approach exploits both correlations between features at a single time step and trends of the same feature over time to reconstruct missing values. Experiments on synthetic data designed to resemble the characteristics of longitudinal epidemiological studies and a case study on a real-world dataset demonstrate the effectiveness of our approach. We show superior performance and parameter stability across varying degrees of missingness and missingness patterns compared to prior work.
Impact Factor
Scopus SNIP
Altmetric
6.800
1.975
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biomedical Computing ; Data Imputation ; Generative Neural Networks ; Machine Learning
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2168-2194
e-ISSN 2168-2208
Verlag IEEE
Begutachtungsstatus Peer reviewed
Institut(e) Research Unit Global Health (UGH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540001-003
Scopus ID 105021970064
Erfassungsdatum 2025-11-25