Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity.
J. Plant Nutr. Soil Sci. 171, 27-35 (2008)
We review recent experimental results on the role of soil biota in stabilizing or destabilizing soil organic matter (SOM). Specifically, we analyze how the differential substrate utilization of the various decomposer organisms contributes to a decorrelation of chemical stability, residence time, and carbon (C) age of organic substrates.. Along soil depth profiles, a mismatch of C allocation and abundance of decomposer organisms is consistently observed, revealing that a relevant proportion of soil C is not subjected to efficient decomposition. Results from recent field and laboratory experiments suggest that (1) bacterial utilization of labile carbon compounds is limited by short-distance transport processes and, therefore, can take place deep in the soil under conditions of effective local diffusion or convection . In contrast, (2) fungal utilization of phenolic substrates, including lignin, appears to be restricted to the upper soil layer due to the requirement for oxygen of the enzymatic reaction involved. (3) Carbon of any age is utilized by soil microorganisms, and microbial C is recycled in the microbial food web. Due to stoichiometric requirements of their metabolism, (4) soil animals tend to reduce the C concentration of SOM disproportionally, until it reaches a threshold level. The reviewed investigations provide new and quantitative evidence that different soil C pools underlie divergent biological constraints of decomposition. The specialization of decomposers towards different substrates and microhabitats leads to a relatively longer persistence of virtually all kinds of organic substrates in the nonpreferred soil spaces. We therefore propose to direct future research explicitly towards such biologically nonpreferred areas where decomposition rates are slow, or where decomposition is frequently interrupted, in order to assess the potential for long-term preservation of C in the soil.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.595
0.850
74
144
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Schlagwörter
Soil microflora; Soil fauna; Carbon Turnover; Recalcitrance; Accessibility
Sprache
englisch
Veröffentlichungsjahr
2008
HGF-Berichtsjahr
2010
ISSN (print) / ISBN
1436-8730
e-ISSN
1522-2624
Zeitschrift
Journal of Plant Nutrition and Soil Science
Quellenangaben
Band: 171,
Heft: 1,
Seiten: 27-35
Verlag
Wiley
Verlagsort
Weinheim
Begutachtungsstatus
Peer reviewed
Institut(e)
Research Unit Microbe-Plant Interactions (AMP)
POF Topic(s)
20402 - Sustainable Plant Production
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504600-001
Scopus ID
54549105358
Erfassungsdatum
2008-06-17