Open Access Gold möglich sobald Verlagsversion bei der ZB eingereicht worden ist.
CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains.
J. Biol. Chem. 284, 2235-2244 (2009)
The adhesion receptor CD96 (TACTILE) is a transmembrane glycoprotein possessing three extracellular immunoglobulinlike domains. Among peripheral blood cells, CD96 is expressed on T cells as well as NK cells and a subpopulation of B cells. A possible function of this receptor in NK cell-mediated killing activities was suggested recently. Moreover, CD96 was described as a tumor marker for T-cell acute lymphoblastic leukemia and acute myeloid leukemia. CD96 binds to CD155 (poliovirus receptor) and nectin-1, an adhesion receptor related to CD155. Here we report that human but not mouse CD96 is expressed in two splice variants possessing either an I-like (variant 1) or V-like (variant 2) second domain. With the notable exception of an AML tumor sample, variant 2 predominates in all the CD96-expressing cell types and tissues examined. Using chimeric human/murine CD96 receptors, we show that the interaction with its ligands is mediated via the outermost V-like domain. In contrast to mouse, however, the binding of human CD96 to CD155 is sensitive to the characteristics of the two downstream domains. This is illustrated by a significantly weaker CD96/CD155 interaction mediated by variant 1 when compared with variant 2. Moreover, recent evidence suggested that mutations in human CD96 correlate with the occurrence of a rare form of trigonocephaly. One such mutation causing a single amino acid exchange in the third domain of human CD96 decreased the capacity of both variants to bind to CD155 considerably, suggesting that a CD96-driven adhesion to CD155 may be crucial in developmental processes.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
acute lymphoblastic-leukemia; acute myeloid-leukemia; cell-adhesion; immunoglobulin superfamily; poliovirus receptor; molecular-cloning; identification; member; expression; migration
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
Zeitschrift
Journal of Biological Chemistry, The
Quellenangaben
Band: 284,
Heft: 4,
Seiten: 2235-2244
Verlag
American Society for Biochemistry and Molecular Biology
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Molecular Immunology (IMI)