Volpato, V.* ; Smith, J.* ; Sandor, C.* ; Ried, J.S.* ; Baud, A.* ; Handel, A.* ; Newey, S.E.* ; Wessely, F.* ; Attar, M.* ; Whiteley, E.* ; Chintawar, S.* ; Verheyen, A.* ; Barta, T.* ; Lako, M.* ; Armstrong, L.L.* ; Muschet, C. ; Artati, A. ; Cusulin, C.* ; Christensen, K.* ; Patsch, C.* ; Sharma, E.* ; Nicod, J.* ; Brownjohn, P.* ; Stubbs, V.* ; Heywood, W.E.* ; Gissen, P.* ; De Filippis, R.* ; Janssen, K.* ; Reinhardt, P.* ; Adamski, J. ; Royaux, I.* ; Peeters, P.J.* ; Terstappen, G.C.* ; Graf, M.* ; Livesey, F.J.* ; Akerman, C.J.* ; Mills, K.* ; Bowden, R.* ; Nicholson, G.* ; Webber, C.* ; Cader, M.Z.* ; Lakics, V.*
Reproducibility of molecular phenotypes after long-term differentiation to human iPSC-derived neurons: A multi-site omics study.
Stem Cell Rep. 11, 897-911 (2018)
Reproducibility in molecular and cellular studies is fundamental to scientific discovery. To establish the reproducibility of a well-defined long-term neuronal differentiation protocol, we repeated the cellular and molecular comparison of the same two iPSC lines across five distinct laboratories. Despite uncovering acceptable variability within individual laboratories, we detect poor cross-site reproducibility of the differential gene expression signature between these two lines. Factor analysis identifies the laboratory as the largest source of variation along with several variation-inflating confounders such as passaging effects and progenitor storage. Single-cell transcriptomics shows substantial cellular heterogeneity underlying inter-laboratory variability and being responsible for biases in differential gene expression inference. Factor analysis-based normalization of the combined dataset can remove the nuisance technical effects, enabling the execution of robust hypothesis-generating studies. Our study shows that multi-center collaborations can expose systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-site reproducibility. In this article, Lakics and colleagues show that, while individual laboratories are able to identify consistent molecular and seemingly statistically robust differences between iPSC neuronal models, cross-site reproducibility is poor. Their findings support multi-center collaborations to expose systematic biases and identify critical factors to be standardized to improve reproducibility in iPSC-based molecular experiments.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cortical Neurons ; Cross-site Experimental Variation ; Gene Expression Profile ; Induced Pluripotent Stem Cell ; Molecular Profiling ; Proteomic Profiles ; Public-private Partnership ; Reproducibility ; Single-cell Sequencing ; Stembancc; Pluripotent Stem-cells; Cerebral-cortex Development; Disease
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
2213-6711
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11,
Heft: 4,
Seiten: 897-911
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cell Press
Verlagsort
Maryland Heights, MO
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30201 - Metabolic Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-500600-001
Förderungen
Copyright
Erfassungsdatum
2018-09-26