Understanding male fertility requires an in-depth characterisation of spermatogenesis, the developmental process by which male gametes are generated. Spermatogenesis occurs continuously throughout a male's reproductive window and involves a complex sequence of developmental steps, both of which make this process difficult to decipher at the molecular level. To overcome this, we transcriptionally profiled single cells from multiple distinct stages during the first wave of spermatogenesis, where the most mature germ cell type is known. This naturally enriches for spermatogonia and somatic cell types present at very low frequencies in adult testes. Our atlas, available as a shiny app (https://marionilab.cruk.cam.ac.uk/SpermatoShiny), allowed us to reconstruct the three main processes of spermatogenesis: spermatogonial differentiation, meiosis, and spermiogenesis. Additionally, we profiled the chromatin changes associated with meiotic silencing of the X chromosome, revealing a set of genes specifically and strongly repressed by H3K9me3 in the spermatocyte stage, but which escape post-meiotic silencing in spermatids.