PuSH - Publikationsserver des Helmholtz Zentrums München

Betz, I.R.* ; Qaiyumi, S.J.* ; Goeritzer, M.* ; Thiele, A.* ; Brix, S.* ; Beyhoff, N.* ; Grune, J.* ; Klopfleisch, R.* ; Greulich, F. ; Uhlenhaut, N.H. ; Kintscher, U.* ; Foryst-Ludwig, A.*

Cardioprotective effects of palmitoleic acid (C16:1n7) in a mouse model of catecholamine-induced cardiac damage are mediated by PPAR activation.

Int. J. Mol. Sci. 22:12695 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Palmitoleic acid (C16:1n7) has been identified as a regulator of physiological cardiac hypertrophy. In the present study, we aimed to investigate the molecular pathways involved in C16:1n7 responses in primary murine cardiomyocytes (PCM) and a mouse model of isoproterenol (ISO)-induced cardiac damage. PCMs were stimulated with C16:1n7 or a vehicle. Afterwards, RNA sequencing was performed using an Illumina HiSeq sequencer. Confirmatory analysis was performed in PCMs and HL-1 cardiomyocytes. For an in vivo study, 129 sv mice were orally treated with a vehicle or C16:1n7 for 22 days. After 5 days of pre-treatment, the mice were injected with ISO (25 mg/kg/d s. c.) for 4 consecutive days. Cardiac phenotyping was performed using echocardiography. In total, 129 genes were differentially expressed in PCMs stimulated with C16:1n7, including Angiopoietin-like factor 4 (Angptl4) and Pyruvate Dehydrogenase Kinase 4 (Pdk4). Both Angptl4 and Pdk4 are proxisome proliferator-activated receptor α/δ (PPARα/δ) target genes. Our in vivo results indicated cardioprotective and anti-fibrotic effects of C16:1n7 application in mice. This was associated with the C16:1n7-dependent regulation of the cardiac PPAR-specific signaling pathways. In conclusion, our experiments demonstrated that C16:1n7 might have protective effects on cardiac fibrosis and inflammation. Our study may help to develop future lipid-based therapies for catecholamine-induced cardiac damage.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Cardiac Damage ; Cardioprotec-tive Effects ; Catecholamine ; Lipokine ; Palmitoleic Acid (c16:1n7) ; Ppar
ISSN (print) / ISBN 1422-0067
e-ISSN 1661-6596
Quellenangaben Band: 22, Heft: 23, Seiten: , Artikelnummer: 12695 Supplement: ,
Verlag MDPI
Verlagsort Basel
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed