PuSH - Publikationsserver des Helmholtz Zentrums München

Reel, S.* ; Reel, P.S.* ; Erlic, Z.* ; Amar, L.* ; Pecori, A.* ; Larsen, C.K.* ; Tetti, M.* ; Pamporaki, C.* ; Prehn, C. ; Adamski, J. ; Prejbisz, A.* ; Ceccato, F.* ; Scaroni, C.* ; Kroiss, M.* ; Dennedy, M.C.* ; Deinum, J.* ; Eisenhofer, G.* ; Langton, K.* ; Mulatero, P.* ; Reincke, M.* ; Rossi, G.P.* ; Lenzini, L.* ; Davies, E.* ; Gimenez-Roqueplo, A.P.* ; Assié, G.* ; Blanchard, A.* ; Zennaro, M.C.* ; Beuschlein, F.* ; Jefferson, E.R.*

Predicting hypertension subtypes with machine learning using targeted metabolites and their ratios.

Metabolites 12:755 (2022)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Cushing Syndrome ; Biomarkers ; Hypertension ; Machine Learning ; Metabolomics ; Pheochromocytoma/paraganglioma ; Primary Aldosteronism
ISSN (print) / ISBN 2218-1989
e-ISSN 2218-1989
Zeitschrift Metabolites
Quellenangaben Band: 12, Heft: 8, Seiten: , Artikelnummer: 755 Supplement: ,
Verlag MDPI
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen Clinical Research Priority Program of the University of Zurich for the CRPP HYRENE