möglich sobald bei der ZB eingereicht worden ist.
A Comparative Study on the Potential of Unsupervised Deep Learning-based Feature Selection in Radiomics.
In: (2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 11-15 July 2022, Glasgow, Scotland, United Kingdom). 2022. 541-544 (Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference ; 2022)
In Radiomics, deep learning-based systems for medical image analysis play an increasing role. However, due to the better explainability, feature-based systems are still preferred, especially by physicians. Often, high-dimensional data and low sample size pose different challenges (e.g. increased risk of overfitting) to machine learning systems. By removing irrelevant and redundant features from the data, feature selection is an effective way of pre-processing. The research in this study is focused on unsupervised deep learning-based methods for feature selection. Five recently proposed algorithms are compared regarding their applicability and efficiency on seven data sets in three different sample applications. It was found that deep learning-based feature selection leads to improved classification results compared to conventional methods, especially for small feature subsets. Clinical Relevance - The exploration of distinctive features and the ability to rank their importance without the need for outcome information is a potential field of application for unsupervised feature selection methods. Especially in multiparametric radiology, the number of features is increasing. The identification of new potential biomarkers is important both for treatment and prevention.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Konferenzbeitrag
ISSN (print) / ISBN
2375-7477
e-ISSN
2694-0604
Konferenztitel
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
Konferzenzdatum
11-15 July 2022
Konferenzort
Glasgow, Scotland, United Kingdom
Quellenangaben
Band: 2022,
Seiten: 541-544
Nichtpatentliteratur
Publikationen