PuSH - Publikationsserver des Helmholtz Zentrums München

Cuyutupa, V.R.* ; Moser, D.* ; Diedrich, V.* ; Cheng, Y. ; Billaud, J.N.* ; Haugg, E.* ; Singer, D.* ; Bereiter-Hahn, J.* ; Herwig, A.* ; Choukér, A.*

Blood transcriptomics mirror regulatory mechanisms during hibernation-a comparative analysis of the Djungarian hamster with other mammalian species.

Pflugers Arch. 475, 1149-1160 (2023)
DOI PMC
Creative Commons Lizenzvertrag
Hibernation enables many species of the mammalian kingdom to overcome periods of harsh environmental conditions. During this physically inactive state metabolic rate and body temperature are drastically downregulated, thereby reducing energy requirements (torpor) also over shorter time periods. Since blood cells reflect the organism´s current condition, it was suggested that transcriptomic alterations in blood cells mirror the torpor-associated physiological state. Transcriptomics on blood cells of torpid and non-torpid Djungarian hamsters and QIAGEN Ingenuity Pathway Analysis (IPA) revealed key target molecules (TMIPA), which were subjected to a comparative literature analysis on transcriptomic alterations during torpor/hibernation in other mammals. Gene expression similarities were identified in 148 TMIPA during torpor nadir among various organs and phylogenetically different mammalian species. Based on TMIPA, IPA network analyses corresponded with described inhibitions of basic cellular mechanisms and immune system-associated processes in torpid mammals. Moreover, protection against damage to the heart, kidney, and liver was deduced from this gene expression pattern in blood cells. This study shows that blood cell transcriptomics can reflect the general physiological state during torpor nadir. Furthermore, the understanding of molecular processes for torpor initiation and organ preservation may have beneficial implications for humans in extremely challenging environments, such as in medical intensive care units and in space.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Hibernation ; Ingenuity Pathway Analysis ; Torpor ; Transcriptomics; Gray Mouse Lemur; Daily Torpor; Gene-expression; Metabolic Suppression; Microcebus-murinus; Bears; Madagascar; Squirrels; Pathways; Turnover
ISSN (print) / ISBN 0031-6768
e-ISSN 1432-2013
Zeitschrift Pflügers Archiv
Quellenangaben Band: 475, Heft: 10, Seiten: 1149-1160 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Tiergartenstrasse 17, D-69121 Heidelberg, Germany
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Förderungen German Research Foundation
Federal Ministry of Economics and Technology/Climate Action
Uniscientia Foundation in Vaduz, Liechtenstein
Projekt DEAL