Curvature Filtrations for Graph Generative Model Evaluation.
In: (37th Conference on Neural Information Processing Systems (NeurIPS), 10-16 December 2023, New Orleans, LA). 10010 North Torrey Pines Rd, La Jolla, California 92037 Usa: Neural Information Processing Systems (nips), 2023. 26
möglich sobald bei der ZB eingereicht worden ist.
Graph generative model evaluation necessitates understanding differences between graphs on the distributional level. This entails being able to harness salient attributes of graphs in an efficient manner. Curvature constitutes one such property that has recently proved its utility in characterising graphs. Its expressive properties, stability, and practical utility in model evaluation remain largely unexplored, however. We combine graph curvature descriptors with emerging methods from topological data analysis to obtain robust, expressive descriptors for evaluating graph generative models.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Ricci Curvature
Keywords plus
ISSN (print) / ISBN
1049-5258
e-ISSN
ISBN
Bandtitel
Konferenztitel
37th Conference on Neural Information Processing Systems (NeurIPS)
Konferzenzdatum
10-16 December 2023
Konferenzort
New Orleans, LA
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 26
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Neural Information Processing Systems (nips)
Verlagsort
10010 North Torrey Pines Rd, La Jolla, California 92037 Usa
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute of AI for Health (AIH)
Förderungen
Hightech Agenda Bavaria
Bavarian State Government
EPSRC Turing AI World-Leading Researcher Fellowship