p-value Adjustment for Monotonous, Unbiased, and Fast Clustering Comparison.
In: (37th Conference on Neural Information Processing Systems (NeurIPS), 10-16 December 2023, New Orleans, LA). 10010 North Torrey Pines Rd, La Jolla, California 92037 Usa: Neural Information Processing Systems (nips), 2023. 16
möglich sobald bei der ZB eingereicht worden ist.
Popular metrics for clustering comparison, like the Adjusted Rand Index and the Adjusted Mutual Information, are type II biased. The Standardized Mutual Information removes this bias but suffers from counterintuitive non-monotonicity and poor computational efficiency. We introduce the p-value adjusted Rand Index (PMI2), the first cluster comparison method that is type II unbiased and provably monotonous. The PMI2 has fast approximations that outperform the Standardized Mutual information. We demonstrate its unbiased clustering selection, approximation quality, and runtime efficiency on synthetic benchmarks. In experiments on image and social network datasets, we show how the PMI2 can help practitioners choose better clustering and community detection algorithms.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
1049-5258
e-ISSN
ISBN
Bandtitel
Konferenztitel
37th Conference on Neural Information Processing Systems (NeurIPS)
Konferzenzdatum
10-16 December 2023
Konferenzort
New Orleans, LA
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 16
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Neural Information Processing Systems (nips)
Verlagsort
10010 North Torrey Pines Rd, La Jolla, California 92037 Usa
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute of AI for Health (AIH)
Förderungen
Bayern Innovativ - Bayerische Gesellschaft fur Innovation und Wissenstransfer mbH
Bayerischen Verbundforderprogramm (BayVFP) - Forderlinie Digitalisierung -Forderbereich Informations-und Kommunikationstechnik of the Bavarian Ministry of Economic Affairs, Regional Development and Energy