PuSH - Publikationsserver des Helmholtz Zentrums München

Zeitschriften-Browsing

182 Datensätze gefunden.
Zum Exportieren der Ergebnisse bitte einloggen.
Alle Publikationen dieser Seite in den Korb legen
81.
Sideri-Lampretsa, V.* ; Zimmer, V.A.* ; Qiu, H.* ; Kaissis, G. & Rueckert, D.*: MAD: Modality Agnostic Distance Measure for Image Registration. In:. Gewerbestrasse 11, Cham, Ch-6330, Switzerland: Springer International Publishing Ag, 2023. 147-156 (Lect. Notes Comput. Sc. ; 14394 LNCS)
82.
Sidulova, M.* ; Sun, X. & Gossmann, A.*: Deep Unsupervised Clustering for Conditional Identification of Subgroups Within a Digital Pathology Image Set. In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2023). 2023. 666-675 (Lect. Notes Comput. Sc. ; 14227 LNCS)
83.
Spitzer, H. et al.: Robust and Generalisable Segmentation of Subtle Epilepsy-Causing Lesions: A Graph Convolutional Approach. In: (Medical Image Computing and Computer Assisted Intervention – MICCAI 2023). Gewerbestrasse 11, Cham, Ch-6330, Switzerland: Springer International Publishing Ag, 2023. 420-428 (Lect. Notes Comput. Sc. ; 14227 LNCS)
84.
Tran, M. et al.: B-Cos Aligned Transformers Learn Human-Interpretable Features. In: (26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vancouver, CANADA, 8-12 October 2023). Gewerbestrasse 11, Cham, Ch-6330, Switzerland: Springer International Publishing Ag, 2023. 514-524 (Lect. Notes Comput. Sc. ; 14227 LNCS)
85.
An, U.* ; Cai, N. ; Dahl, A.* & Sankararaman, S.*: AutoComplete: Deep learning-based phenotype imputation for large-scale biomedical data. Lect. Notes Comput. Sc. 13278 LNBI, 385-386 (2022)
86.
Heinrich, M.* et al.: Preface. Lect. Notes Comput. Sc. 13386 LNCS, v-vi (2022)
87.
Horoi, S.* et al.: Exploring the geometry and topology of neural network loss landscapes. Lect. Notes Comput. Sc. 13205 LNCS, 171-184 (2022)
88.
Jian, B.* et al.: Weakly-supervised biomechanically-constrained CT/MRI registration of the spine. Lect. Notes Comput. Sc. 13436 LNCS, 227-236 (2022)
89.
Kazeminia, S. et al.: Anomaly-aware multiple instance learning for rare anemia disorder classification. Lect. Notes Comput. Sc. 13438 LNCS, 341-350 (2022)
90.
Koch, V. et al.: Noise transfer for unsupervised domain adaptation of retinal OCT images. Lect. Notes Comput. Sc. 13432 LNCS, 699-708 (2022)
91.
Lang, D.M. ; Peeken, J.C. ; Combs, S.E. ; Wilkens, J.J.* & Bartzsch, S.: Deep learning based GTV delineation and progression free survival risk score prediction for head and neck cancer patients. In: (HECKTOR 2021: Head and Neck Tumor Segmentation and Outcome Prediction, 27 September 2021, Virtual, Online). 2022. 150-159 (Lect. Notes Comput. Sc. ; 13209 LNCS)
92.
Lang, D.M. ; Peeken, J.C. ; Combs, S.E. ; Wilkens, J.J.* & Bartzsch, S.: A video data based transfer learning approach for classification of MGMT status in brain tumor MR images. Lect. Notes Comput. Sc. 12962 LNCS, 306-314 (2022)
93.
Liu, Y.* et al.: DeStripe: A Self2Self spatio-spectral graph neural network with unfolded hessian for stripe artifact removal in light-sheet microscopy. Lect. Notes Comput. Sc. 13434 LNCS, 99-108 (2022)
94.
Machado, I.* et al.: Quality-aware cine cardiac MRI reconstruction and analysis from undersampled K-space data. Lect. Notes Comput. Sc. 13131 LNCS, 12-20 (2022)
95.
Mächler, L.* et al.: FedCostWAvg: A new averaging for better federated learning. Lect. Notes Comput. Sc. 12963 LNCS, 383-391 (2022)
96.
Reisenbüchler, D. ; Wagner, S. ; Boxberg, M.* & Peng, T.: Local attention graph-based transformer for multi-target genetic alteration prediction. Lect. Notes Comput. Sc. 13432 LNCS, 377-386 (2022)
97.
Salehi, R. et al.: Unsupervised cross-domain feature extraction for single blood cell image classification. Lect. Notes Comput. Sc. 13433 LNCS, 739-748 (2022)
98.
Shetab Boushehri, S. ; Qasim, A.B. ; Waibel, D.J.E. ; Schmich, F.* & Marr, C.: Systematic comparison of incomplete-supervision approaches for biomedical image classification. Lect. Notes Comput. Sc. 13529 LNCS, 355-365 (2022)
99.
Starke, S.* ; Thalmeier, D. ; Steinbach, P.* & Piraud, M.: A hybrid radiomics approach to modeling progression-free survival in head and neck cancers. In: (HECKTOR 2021: Head and Neck Tumor Segmentation and Outcome Prediction, Virtual, Online). 2022. 266-277 (Lect. Notes Comput. Sc. ; 13209 LNCS)
100.
Tomczak, A.* ; Gupta, A.* ; Ilic, S.* ; Navab, N.* & Albarqouni, S.: What can we learn about a generated image corrupting its latent representation? Lect. Notes Comput. Sc. 13436 LNCS, 505-515 (2022)