PuSH - Publikationsserver des Helmholtz Zentrums München

A modular framework for gene set analysis integrating multilevel omics data.

Nucleic Acids Res. 41, 9622-9633 (2013)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Modern high-throughput methods allow the investigation of biological functions across multiple 'omics' levels. Levels include mRNA and protein expression profiling as well as additional knowledge on, for example, DNA methylation and microRNA regulation. The reason for this interest in multi-omics is that actual cellular responses to different conditions are best explained mechanistically when taking all omics levels into account. To map gene products to their biological functions, public ontologies like Gene Ontology are commonly used. Many methods have been developed to identify terms in an ontology, overrepresented within a set of genes. However, these methods are not able to appropriately deal with any combination of several data types. Here, we propose a new method to analyse integrated data across multiple omics-levels to simultaneously assess their biological meaning. We developed a model-based Bayesian method for inferring interpretable term probabilities in a modular framework. Our Multi-level ONtology Analysis (MONA) algorithm performed significantly better than conventional analyses of individual levels and yields best results even for sophisticated models including mRNA fine-tuning by microRNAs. The MONA framework is flexible enough to allow for different underlying regulatory motifs or ontologies. It is ready-to-use for applied researchers and is available as a standalone application from http://icb.helmholtz-muenchen.de/mona.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.278
2.341
19
25
Tags
Icb_Latent Causes Icb_ML Icb_rene Icb_VirtualLiver
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Microrna Expression ; Enrichment Analysis ; Signaling Pathways ; Breast-cancer ; Model ; Cisplatin ; Profiles ; Ontology ; Biology ; Information
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2013
ISSN (print) / ISBN 0305-1048
e-ISSN 1362-4962
Quellenangaben Band: 41, Heft: 21, Seiten: 9622-9633 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 23975194
Scopus ID 84890011736
Erfassungsdatum 2013-11-14