Analytical (closed-form) inversion schemes have been the standard approach for image reconstruction in optoacoustic tomography due to their fast reconstruction abilities and low memory requirements. Yet, the need for quantitative imaging and artifact reduction has led to the development of more accurate inversion approaches, which rely on accurate forward modeling of the optoacoustic wave generation and propagation. In this way, multiple experimental factors can be incorporated, such as the exact detection geometry, spatio-temporal response of the transducers, and acoustic heterogeneities. The modelbased inversion commonly results in very large sparse matrix formulations that require computationally extensive and memory demanding regularization schemes for image reconstruction, hindering their effective implementation in real-time imaging applications. Herein, we introduce a new discretization procedure for efficient model-based reconstructions in two-dimensional optoacoustic tomography that allows for parallel implementation on a graphics processing unit (GPU) with a relatively low numerical complexity. By on-the-fly calculation of the model matrix in each iteration of the inversion procedure, the new approach results in imaging frame rates exceeding 10Hz, thus enabling real-time image rendering using the model-based approach.