Dokumente im Korb
Helmholtz Zentrum München
|
Impressum
PuSH - Publikationsserver des Helmholtz Zentrums München
Navigation
Startseite
English
Recherche
Erweiterte Suche
Durchblättern nach ...
... Zeitschriften
... Publikationstypen
... Forschungsdaten
... Erscheinungsjahr
Publikationen im Überblick
Hilfe & Kontakt
Ansprechpartner
Hilfe
Datenschutz
Kondofersky, I.
;
Theis, F.J.
;
Fuchs, C.
Inferring catalysis in biological systems.
IET Syst. Biol.
10
, 210-218 (2016)
Postprint
DOI
Open Access Green
möglich sobald bei der ZB eingereicht worden ist.
Abstract
Metriken
Zusatzinfos
© The Institution of Engineering and Technology.In systems biology, one is often interested in the communication patterns between several species, such as genes, enzymes or proteins. These patterns become more recognisable when temporal experiments are performed. This temporal communication can be structured by reaction networks such as gene regulatory networks or signalling pathways. Mathematical modelling of data arising from such networks can reveal important details, thus helping to understand the studied system. In many cases, however, corresponding models still deviate from the observed data. This may be due to unknown but present catalytic reactions. From a modelling perspective, the question of whether a certain reaction is catalysed leads to a large increase of model candidates. For large networks the calibration of all possible models becomes computationally infeasible. We propose a method which determines a substantially reduced set of appropriate model candidates and identifies the catalyst of each reaction at the same time. This is incorporated in a multiple-step procedure which first extends the network by additional latent variables and subsequently identifies catalyst candidates using similarity analysis methods. Results from synthetic data examples suggest a good performance even for non-informative data with few observations. Applied on CD95 apoptotic pathway our method provides new insights into apoptosis regulation.
Altmetric
Weitere Metriken?
[➜Einloggen]
Tags
Icb_biostatistics
Icb_Latent Causes
Anmerkungen
Besondere Publikation
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Catalysis ; Catalysts ; Biochemistry ; Genetics ; Enzymes ; Biology Computing ; Calibration ; Molecular Clusters ; Inferring Catalysis ; Biological Systems ; Systems Biology ; Communication Patterns ; Genes ; Enzymes ; Proteins ; Time-resolved Experiments ; Time-resolved Communication ; Reaction Networks ; Gene Regulatory Networks ; Biochemical Networks ; Signalling Pathways ; Mathematical Data Modelling ; Catalytic Reactions ; Calibration ; Catalyst ; Multiple-step Procedure ; Latent Variables ; Similarity; Model-reduction; Networks; Organization; Dynamics; Cells
Keywords plus
ISSN (print) / ISBN
1751-8849
e-ISSN
1751-8857
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Zeitschrift
IET Systems Biology
Quellenangaben
Band: 10,
Heft: 6,
Seiten: 210-218
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institution of Engineering and Technology (IET)
Verlagsort
Hertford
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Veröffentlichungsnummer
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)
Förderungen