Statistical molecular target detection framework for multispectral optoacoustic tomography.
IEEE Trans. Med. Imaging 35, 2534-2545 (2016)
Statistical sub-pixel detection via the adaptive matched filter (AMF) has been shown to improve the molecular imaging sensitivity and specificity of optoacoustic (photoacoustic) imaging. Applied to multispectral optoacoustic tomography (MSOT), AMF assumes that the spatially-varying tissue spectra follow a multivariate Gaussian distribution, that the spectrum of the target molecule is precisely known and that the molecular target lies in "low probability" within the data. However, when these assumptions are violated, AMF may result in considerable performance degradation. The objective of this work is to develop a robust statistical detection framework that is appropriately suited to the characteristics of MSOT molecular imaging. Using experimental imaging data, we perform a statistical characterization of MSOT tissue images and conclude to a detector that is based on the t-distribution. More importantly, we introduce a method for estimating the covariance matrix of the background-tissue statistical distribution, which enables robust detection performance independently of the molecular target size or intensity. The performance of the statistical detection framework is assessed through simulations and experimental in vivo measurements and compared to previously used methods.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Covariance Contamination ; Molecular Imaging ; Multispectral Optoacoustic Tomography ; Photoacoustic Tomography ; Spectral Unmixing ; Statistical Sub-pixel Detection; Hyperspectral Imaging Data; Photoacoustic Images; Tissue; Distributions
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2016
Prepublished im Jahr
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 35,
Heft: 12,
Seiten: 2534-2545
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Förderungen
Copyright
Erfassungsdatum
2016-06-29