Lucke, T.* ; Herrera, M.* ; Wacker, M. ; Holle, R. ; Biertz, F.* ; Nowak, D.* ; Huber, R.* ; Söhler, S.* ; Vogelmeier, C.* ; Ficker, J.H.* ; Mückter, H.* ; Jörres, R.A.*
     
 
    
        
Systematic analysis of self-reported comorbidities in large cohort studies - A novel stepwise approach by evaluation of medication.
    
    
        
    
    
        
        PLoS ONE 11:e0163408 (2016)
    
    
    
		
		
			
				Objective In large cohort studies comorbidities are usually self-reported by the patients. This way to collect health information only represents conditions known, memorized and openly reported by the patients. Several studies addressed the relationship between self-reported comorbidities and medical records or pharmacy data, but none of them provided a structured, documented method of evaluation. We thus developed a detailed procedure to compare self-reported comorbidities with information on comorbidities derived from medication inspection. This was applied to the data of the German COPD cohort COSYCONET. Methods Approach I was based solely on ICD10-Codes for the diseases and the indications of medications. To overcome the limitations due to potential non-specificity of medications, Approach II was developed using more detailed information, such as ATC-Codes specific for one disease. The relationship between reported comorbidities and medication was expressed by a four-level concordance score. Results Approaches I and II demonstrated that the patterns of concordance scores markedly differed between comorbidities in the COSYCONET data. On average, Approach I resulted in more than 50% concordance of all reported diseases to at least one medication. The more specific Approach II showed larger differences in the matching with medications, due to large differences in the disease-specificity of drugs. The highest concordance was achieved for diabetes and three combined cardiovascular disorders, while it was substantial for dyslipidemia and hyperuricemia, and low for asthma. Conclusion Both approaches represent feasible strategies to confirm self-reported diagnoses via medication. Approach I covers a broad spectrum of diseases and medications but is limited regarding disease-specificity. Approach II uses the information from medications specific for a single disease and therefore can reach higher concordance scores. The strategies described in a detailed and reproducible manner are generally applicable in large studies and might be useful to extract as much information as possible from the available data.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Obstructive Pulmonary-disease; Record; Copd; Cosyconet; Multimorbidity; Validation; Agreement; Diagnoses; Symptoms; Care
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        
    
 
    
        Veröffentlichungsjahr
        2016
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2016
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 11,  
	    Heft: 10,  
	    Seiten: ,  
	    Artikelnummer: e0163408 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        80000 - German Center for Lung Research
30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-501800-533
G-505300-002
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2016-11-11