PuSH - Publikationsserver des Helmholtz Zentrums München

Boiger, R.* ; Hasenauer, J. ; Hross, S. ; Kaltenbacher, B.*

Integration based profile likelihood calculation for PDE constrained parameter estimation problems.

Inverse Probl. 32:125009 (2016)
Postprint DOI
Open Access Green
Partial differential equation (PDE) models are widely used in engineering and natural sciences to describe spatio-temporal processes. The parameters of the considered processes are often unknown and have to be estimated from experimental data. Due to partial observations and measurement noise, these parameter estimates are subject to uncertainty. This uncertainty can be assessed using profile likelihoods, a reliable but computationally intensive approach. In this paper, we present the integration based approach for the profile likelihood calculation developed by (Chen and Jennrich 2002 J. Comput. Graph. Stat. 11 714-32) and adapt it to inverse problems with PDE constraints. While existing methods for profile likelihood calculation in parameter estimation problems with PDE constraints rely on repeated optimization, the proposed approach exploits a dynamical system evolving along the likelihood profile. We derive the dynamical system for the unreduced estimation problem, prove convergence and study the properties of the integration based approach for the PDE case. To evaluate the proposed method, we compare it with state-of-the-art algorithms for a simple reaction-diffusion model for a cellular patterning process. We observe a good accuracy of the method as well as a significant speed up as compared to established methods. Integration based profile calculation facilitates rigorous uncertainty analysis for computationally demanding parameter estimation problems with PDE constraints.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.651
1.358
11
11
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Parameter Estimation ; Partial Differential Equations ; Uncertainty Quantification ; Profile Likelihood; Practical Identifiability Analysis; Confidence-intervals; Systems Biology; Models; Gradient
Sprache
Veröffentlichungsjahr 2016
HGF-Berichtsjahr 2016
ISSN (print) / ISBN 0266-5611
e-ISSN 1361-6420
Zeitschrift Inverse Problems
Quellenangaben Band: 32, Heft: 12, Seiten: , Artikelnummer: 125009 Supplement: ,
Verlag Institute of Physics Publishing (IOP)
Verlagsort Bristol
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
G-503800-001
Scopus ID 85009165961
Erfassungsdatum 2016-12-31