Metabotyping and its application in targeted nutrition: An overview.
Br. J. Nutr. 117, 1631-1644 (2017)
Metabolic diversity leads to differences in nutrient requirements and responses to diet and medication between individuals. Using the concept of metabotyping - that is, grouping metabolically similar individuals - tailored and more efficient recommendations may be achieved. The aim of this study was to review the current literature on metabotyping and to explore its potential for better targeted dietary intervention in subjects with and without metabolic diseases. A comprehensive literature search was performed in PubMed, Google and Google Scholar to find relevant articles on metabotyping in humans including healthy individuals, population-based samples and patients with chronic metabolic diseases. A total of thirty-four research articles on human studies were identified, which established more homogeneous subgroups of individuals using statistical methods for analysing metabolic data. Differences between studies were found with respect to the samples/populations studied, the clustering variables used, the statistical methods applied and the metabotypes defined. According to the number and type of the selected clustering variables, the definitions of metabotypes differed substantially; they ranged between general fasting metabotypes, more specific fasting parameter subgroups like plasma lipoprotein or fatty acid clusters and response groups to defined meal challenges or dietary interventions. This demonstrates that the term 'metabotype' has a subjective usage, calling for a formalised definition. In conclusion, this literature review shows that metabotyping can help identify subgroups of individuals responding differently to defined nutritional interventions. Targeted recommendations may be given at such metabotype group levels. Future studies should develop and validate definitions of generally valid metabotypes by exploiting the increasingly available metabolomics data sets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Enable Cluster ; Metabolic Phenotypes ; Metabotypes ; Metabotyping ; Targeted Nutrition; Metabolic Risk-factors; Personalized Nutrition; Cluster-analysis; H-1-nmr Spectroscopy; Metabonomic Analysis; Pattern-recognition; Gender-differences; Alpk-apfcd; Phenotypes; Women
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
HGF-Berichtsjahr
2017
ISSN (print) / ISBN
0007-1145
e-ISSN
1475-2662
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 117,
Heft: 12,
Seiten: 1631-1644
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cambridge Univ. Press
Verlagsort
Cambridge
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-007
G-504091-004
G-501900-401
Förderungen
Copyright
Erfassungsdatum
2017-07-27