PuSH - Publikationsserver des Helmholtz Zentrums München

Eulenberg, P. ; Köhler, N. ; Blasi, T. ; Filby, A.* ; Carpenter, A.E.* ; Rees, P.* ; Theis, F.J. ; Wolf, F.A.

Reconstructing cell cycle and disease progression using deep learning.

Nat. Commun. 8:463 (2017)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
We show that deep convolutional neural networks combined with nonlinear dimension reduction enable reconstructing biological processes based on raw image data. We demonstrate this by reconstructing the cell cycle of Jurkat cells and disease progression in diabetic retinopathy. In further analysis of Jurkat cells, we detect and separate a subpopulation of dead cells in an unsupervised manner and, in classifying discrete cell cycle stages, we reach a sixfold reduction in error rate compared to a recent approach based on boosting on image features. In contrast to previous methods, deep learning based predictions are fast enough for on-the-fly analysis in an imaging flow cytometer.The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Altmetric
Weitere Metriken?
Tags
Icb_ML
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Microscopy Images; Flow-cytometry; Classification; Regulators
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 8, Heft: 1, Seiten: , Artikelnummer: 463 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed