Grassmann, F.* ; Mengelkamp, J.* ; Brandl, C.* ; Harsch, S.* ; Zimmermann, M.E.* ; Linkohr, B. ; Peters, A. ; Heid, I.M.* ; Palm, C.* ; Weber, B.H.F.*
     
 
    
        
A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography.
    
    
        
    
    
        
        Ophthalmology 125, 1410-1420 (2018)
    
    
    
		
		
			
				Purpose: Age-related macular degeneration (AMD) is a common threat to vision. While classification of disease stages is critical to understanding disease risk and progression, several systems based on color fundus photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein, we present an automated computer-based classification algorithm.Design: Algorithm development for AMD classification based on a large collection of color fundus images. Validation is performed on a cross-sectional, population-based study.Participants: We included 120 656 manually graded color fundus images from 3654 Age-Related Eye Disease Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health Research in the Region of Augsburg) study.Methods: We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and trained several convolution deep learning architectures. An ensemble of network architectures improved prediction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-based study.Main Outcome Measures: kappa Statistics and accuracy to evaluate the concordance between predicted and expert human grader classification.Results: A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test set with a quadratic weighted kappa of 92% (95% confidence interval, 89%-92%) and an overall accuracy of 63.3%. In the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion of other retinopathies, the weighted and unweighted kappa increased to 50% and 63%, respectively. Importantly, the algorithm detected 84.2% of all fundus images with definite signs of early or late AMD. Overall, 94.3% of healthy fundus images were classified correctly.Conclusions: Our deep learning algoritm revealed a weighted kappa outperforming human graders in the AREDS study and is suitable to classify AMD fundus images in other datasets using individuals >55 years of age.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Progression; Classification; Maculopathy; Amd; Association; Genetics; Traits; System; Health
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2018
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2018
    
 
    
    
        ISSN (print) / ISBN
        0161-6420
    
 
    
        e-ISSN
        1549-4713
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 125,  
	    Heft: 9,  
	    Seiten: 1410-1420 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            360 Park Ave South, New York, Ny 10010-1710 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Epidemiology (EPI)
    
 
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-504000-006
G-504090-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2018-06-21