Kovalishyn, V.V.* ; Grouleff, J.* ; Semenyuta, I.* ; Sinenko, V.O.* ; Slivchuk, S.R.* ; Hodyna, D.* ; Brovarets, V.* ; Blagodatny, V.* ; Poda, G.* ; Tetko, I.V. ; Metelytsia, L.*
Rational design of isonicotinic acid hydrazide derivatives with antitubercular activity: Machine learning, molecular docking, synthesis and biological testing.
Chem. Biol. Drug Des. 92, 1272-1278 (2018)
The problem of designing new antitubercular drugs against multiple drug‐resistant tuberculosis (MDR‐TB) was addressed using advanced machine learning methods. As there are only few published measurements against MDR‐TB, we collected a large literature data set and developed models against the non‐resistant H37Rv strain. The predictive accuracy of these models had a coefficient of determination q2 = .7–.8 (regression models) and balanced accuracies of about 80% (classification models) with cross‐validation and independent test sets. The models were applied to screen a virtual chemical library, which was designed to have MDR‐TB activity. The seven most promising compounds were identified, synthesized and tested. All of them showed activity against the H37Rv strain, and three molecules demonstrated activity against the MDR‐TB strain. The docking analysis indicated that the discovered molecules could bind enoyl reductase, InhA, which is required in mycobacterial cell wall development. The models are freely available online (http://ochem.eu/article/103868) and can be used to predict potential anti‐TB activity of new chemicals.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Antitubercular Activity ; Isonicotinic Acid Hydrazide Derivatives ; Machine Learning ; Molecular Docking ; Mycobacterium Tuberculosis (mtb) ; Ochem; Polycyclic Aromatic-hydrocarbons; Lung Epithelial-cells; Yangtze-river Delta; 6 European Cities; Ambient Air; Oxidative Stress; Mouse Lung; A549 Cells; Cytotoxic Responses; Seasonal-variation
Keywords plus
Sprache
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
1747-0277
e-ISSN
1747-0285
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 92,
Heft: 1,
Seiten: 1272-1278
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Blackwell
Verlagsort
Los Angeles, Calif.
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503000-001
Förderungen
Copyright
Erfassungsdatum
2018-07-16