Wallach, D.* ; Martre, P.* ; Liu, B.* ; Asseng, S.* ; Ewert, F.* ; Thorburn, P.J.* ; van Ittersum, M.* ; Aggarwal, P.K.* ; Ahmed, M.* ; Basso, B.* ; Biernath, C.J. ; Cammarano, D.* ; Challinor, A.J.* ; de Sanctis, G.* ; Dumont, B.* ; Eyshi Rezaei, E.* ; Fereres, E.* ; Fitzgerald, G.J.* ; Gao, Y.* ; Garcia-Vila, M.* ; Gayler, S.* ; Girousse, C.* ; Hoogenboom, G.* ; Horan, H.* ; Izaurralde, R.C.* ; Jones, C.D.* ; Kassie, B.T.* ; Kersebaum, K.C.* ; Klein, C. ; Koehler, A.-K.* ; Maiorano, A.* ; Minoli, S.* ; Müller, C.* ; Naresh Kumar, S.* ; Nendel, C.* ; O'Leary, G.J.* ; Palosuo, T.* ; Priesack, E. ; Ripoche, D.* ; Rötter, R.P.* ; Semenov, M.A.* ; Stöckle, C.* ; Stratonovitch, P.* ; Streck,T.* ; Supit, I.* ; Tao, F.* ; Wolf, J.* ; Zhang, Z.*
     
 
    
        
Multimodel ensembles improve predictions of crop-environment-management interactions.
    
    
        
    
    
        
        Glob. Change Biol. 24, 5072-5083 (2018)
    
    
    
		
		
			
				A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Climate Change Impact ; Crop Models ; Ensemble Mean ; Ensemble Median ; Multimodel Ensemble ; Prediction; Climate-change; Models; Wheat; Yield; Uncertainty; Europe; Skill
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        
    
 
    
        Veröffentlichungsjahr
        2018
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2018
    
 
    
    
        ISSN (print) / ISBN
        1354-1013
    
 
    
        e-ISSN
        1365-2486
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 24,  
	    Heft: 11,  
	    Seiten: 5072-5083 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Wiley
        
 
        
            Verlagsort
            111 River St, Hoboken 07030-5774, Nj Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        G-504912-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2018-07-31