Hertel, J.* ; Rotter, M. ; Frenzel, S.* ; Zacharias, H.U. ; Krumsiek, J. ; Rathkolb, B. ; Hrabě de Angelis, M. ; Rabstein, S.* ; Pallapies, D.* ; Brüning, T.* ; Grabe, H.J.* ; Wang-Sattler, R.
Dilution correction for dynamically influenced urinary analyte data.
Anal. Chim. Acta 1032, 18-31 (2018)
Urinary analyte data has to be corrected for the sample specific dilution as the dilution varies intra-and interpersonally dramatically, leading to non-comparable concentration measures. Most methods of dilution correction utilized nowadays like probabilistic quotient normalization or total spectra normalization result in a division of the raw data by a dilution correction factor. Here, however, we show that the implicit assumption behind the application of division, log-linearity between the urinary flow rate and the raw urinary concentration, does not hold for analytes which are not in steady state in blood. We explicate the physiological reason for this short-coming in mathematical terms and demonstrate the empirical consequences via simulations and on multiple time-point metabolomic data, showing the insufficiency of division-based normalization procedures to account for the complex non-linear analyte specific dependencies on the urinary flow rate. By reformulating normalization as a regression problem, we propose an analyte specific way to remove the dilution variance via a flexible non-linear regression methodology which then was shown to be more effective in comparison to division-based normalization procedures. In the progress, we developed several, easily applicable methods of normalization diagnostics to decide on the method of dilution correction in a given sample. On the way, we identified furthermore the time-span since last urination as an important variance factor in urinary metabolome data which is until now completely neglected. In conclusion, we present strong theoretical and empirical evidence that normalization has to be analyte specific in dynamically influenced data. Accordingly, we developed a normalization methodology for removing the dilution variance in urinary data respecting the single analyte kinetics.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Normalization ; Dilution Correction ; Urine Analysis ; Metabolomics ; Model Diagnostics ; Non-linear Regression Techniques; Flow-rate; Normalization Strategies; Creatinine; Metabolomics; Adjustment; Gravity; Humans; Substances; Profiles; Patterns
Keywords plus
Sprache
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0003-2670
e-ISSN
1873-4324
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 1032,
Heft: ,
Seiten: 18-31
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Po Box 211, 1000 Ae Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-504091-003
G-554100-001
G-500692-001
G-500600-001
G-501900-402
Förderungen
Copyright
Erfassungsdatum
2018-07-30