PuSH - Publikationsserver des Helmholtz Zentrums München

Evaluation of derivative-free optimizers for parameter estimation in systems biology.

IFAC PapersOnline 51, 98-101 (2018)
Verlagsversion DOI
Free by publisher
Derivative-free optimization can be used to estimate parameters without computing derivatives. As there exist many methods, it is unclear which to use in practice. Here, we present two comparative studies of 18 state-of-the-art methods: Firstly, we evaluate them on a set of 466 classic optimization test problems of dimension 2 to 300. Secondly, we study their performance in parameter estimation on 8 ODE models of biological processes, comparing them to state-of-the-art derivative-based optimization. We observe that different problem features necessitate the use of different methods, for which we can give suggestions based on our findings. Our analysis suggests that classic test problems are not representative for problems in systems biology. For ODE models, we find that purely derivative-free methods are for most problems not reliable or at least inferior to derivative-based methods.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Derivative-free Optimization ; Ode Models ; Parameter Estimation
ISSN (print) / ISBN 2405-8963
e-ISSN 1474-6670
Zeitschrift IFAC-PapersOnLine
Quellenangaben Band: 51, Heft: 19, Seiten: 98-101 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Frankfurt ; München [u.a.]
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed