Nonlinear association structures in flexible Bayesian additive joint models.
    
    
        
    
    
        
        Stat. Med. 37, 4771-4788 (2018)
    
    
    
		
		
			
				Joint models of longitudinal and survival data have become an important tool for modeling associations between longitudinal biomarkers and event processes. The association between marker and log hazard is assumed to be linear in existing shared random effects models, with this assumption usually remaining unchecked. We present an extended framework of flexible additive joint models that allows the estimation of nonlinear covariate specific associations by making use of Bayesian P-splines. Our joint models are estimated in a Bayesian framework using structured additive predictors for all model components, allowing for great flexibility in the specification of smooth nonlinear, time-varying, and random effects terms for longitudinal submodel, survival submodel, and their association. The ability to capture truly linear and nonlinear associations is assessed in simulations and illustrated on the widely studied biomedical data on the rare fatal liver disease primary biliary cirrhosis. All methods are implemented in the R package bamlss to facilitate the application of this flexible joint model in practice.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Joint Model ; Longitudinal Data ; Nonlinear Association ; P-splines ; Time-to-event Data; To-event Data; Survival-data; R Package; Regression; Splines; Predictions
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2018
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2018
    
 
    
    
        ISSN (print) / ISBN
        0277-6715
    
 
    
        e-ISSN
        1097-0258
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 37,  
	    Heft: 30,  
	    Seiten: 4771-4788 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Wiley
        
 
        
            Verlagsort
            111 River St, Hoboken 07030-5774, Nj Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30201 - Metabolic Health
    
 
    
        Forschungsfeld(er)
        Helmholtz Diabetes Center
    
 
    
        PSP-Element(e)
        G-502100-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2018-10-25