Dokumente im Korb
Helmholtz Zentrum München
|
Impressum
PuSH - Publikationsserver des Helmholtz Zentrums München
Navigation
Startseite
English
Recherche
Erweiterte Suche
Durchblättern nach ...
... Zeitschriften
... Publikationstypen
... Forschungsdaten
... Erscheinungsjahr
Publikationen im Überblick
Hilfe & Kontakt
Ansprechpartner
Hilfe
Datenschutz
Brechtmann, F.* ; Mertes, C.* ; Matusevičiūtė, A.* ; Yépez, V.A.* ; Avsec, Z.* ; Herzog, M.* ; Bader, D.M.* ;
Prokisch, H.
; Gagneur, J.*
OUTRIDER: A statistical method for detecting aberrantly expressed genes in RNA sequencing data.
Am. J. Hum. Genet.
103
, 907-917 (2018)
Verlagsversion
Postprint
DOI
PMC
Open Access Green
möglich sobald bei der ZB eingereicht worden ist.
Abstract
Metriken
Zusatzinfos
Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. RNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome sequencing for precisely identifying the molecular causes of rare disorders. A powerful approach is to identify aberrant gene expression levels as potential pathogenic events. However, existing methods for detecting aberrant read counts in RNA-seq data either lack assessments of statistical significance, so that establishing cutoffs is arbitrary, or rely on subjective manual corrections for confounders. Here, we describe OUTRIDER (Outlier in RNA-Seq Finder), an algorithm developed to address these issues. The algorithm uses an autoencoder to model read-count expectations according to the gene covariation resulting from technical, environmental, or common genetic variations. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. The model is automatically fitted to achieve the best recall of artificially corrupted data. Precision-recall analyses using simulated outlier read counts demonstrated the importance of controlling for covariation and significance-based thresholds. OUTRIDER is open source and includes functions for filtering out genes not expressed in a dataset, for identifying outlier samples with too many aberrantly expressed genes, and for detecting aberrant gene expression on the basis of false-discovery-rate-adjusted p values. Overall, OUTRIDER provides an end-to-end solution for identifying aberrantly expressed genes and is suitable for use by rare-disease diagnostic platforms.
Altmetric
Weitere Metriken?
[➜Einloggen]
Tags
Anmerkungen
Besondere Publikation
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Aberrant Gene Expression ; Normalization ; Outlier Detection ; Rare Disease ; Rna Sequencing; Differential Expression; Transcriptome; Impact
Keywords plus
ISSN (print) / ISBN
0002-9297
e-ISSN
1537-6605
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Zeitschrift
American Journal of Human Genetics, The
Quellenangaben
Band: 103,
Heft: 6,
Seiten: 907-917
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
New York, NY
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Veröffentlichungsnummer
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Human Genetics (IHG)
Förderungen